
Calc Guide

Appendix B
 Description of Functions

This PDF is designed to be read onscreen, two pages at a
time. If you want to print a copy, your PDF viewer should
have an option for printing two pages on one sheet of
paper, but you may need to start with page 2 to get it to
print facing pages correctly. (Print this cover page
separately.)

Copyright
This document is Copyright © 2005–2010 by its contributors as listed
in the section titled Authors. You may distribute it and/or modify it
under the terms of either the GNU General Public License, version 3 or
later, or the Creative Commons Attribution License, version 3.0 or
later.

All trademarks within this guide belong to their legitimate owners.

Authors
Magnus Adielsson
Richard Barnes
Peter Kupfer
Iain Roberts
Jean Hollis Weber

Feedback
Please direct any comments or suggestions about this document to:
authors@documentation.openoffice.org

Acknowledgments
Much credit for this work is due to the unselfish efforts of Bill Wilson
and Dr. Bob Smith.

Publication date and software version
Published 16 March 2010. Based on OpenOffice.org 3.2.

You can download
 an editable version of this document from

 http://oooauthors.org/english/userguide3/published/

http://oooauthors.org/english/userguide3/published/
mailto:authors@documentation.openoffice.org
http://creativecommons.org/licenses/by/3.0/
http://www.gnu.org/licenses/gpl.html

Contents
Copyright...2

Functions available in Calc..4

Terminology: numbers and arguments...4

Mathematical functions..5

Financial analysis functions...10

A note about dates..10

A note about interest rates...10

Statistical analysis functions..24

Date and time functions...33

Logical functions..37

Informational functions..38

Database functions...41

Array functions..43

Spreadsheet functions..45

Text functions...50

Add-in functions...54

Description of Functions 3

Functions available in Calc
Calc provides all of the commonly used functions found in modern
spreadsheet applications. Since many of Calc’s functions require very
specific and carefully calculated input arguments, the descriptions in
this appendix should not be considered complete references for each
function. Refer to the application Help or the OOo wiki for details and
examples of all functions. On the wiki, start with
http://wiki.services.openoffice.org/wiki/Documentation/How_Tos/Calc:_
Functions_listed_by_category

Over 300 standard functions are available in Calc. More can be added
through extensions to Calc (see Chapter 14). The following tables list
Calc’s functions organized into eleven categories.

Note

Functions whose names end with _ADD are provided for
compatibility with Microsoft Excel functions. They return the
same results as the corresponding functions in Excel (without the
suffix), which though they may be correct, are not based on
international standards.

Terminology: numbers and arguments
Some of the descriptions in this appendix define limitations on the
number of values or arguments that can be passed to the function.
Specifically, functions that refer to the following arguments may lead
to confusion.

• Number_1; number_2;... number_30
• Number 1 to 30
• a list of up to 30 numbers

There is a significant difference between a list of numbers (or integers)
and the number of arguments a function will accept. For, example the
SUM function will only accept a maximum of 30 arguments. This limit
does NOT mean that you can only sum 30 numbers, but that you can
only pass 30 separate arguments to the function.

Arguments are values separated by semi-colons, and can include
ranges which often refer to multiple values. Therefore one argument
can refer to several values, and a function that limits input to 30
arguments may in fact accept more then 30 separate numerical values.

This appendix attempts to clarify this situation by using the term
arguments, rather than any of the other phrases.

4 Description of Functions

http://wiki.services.openoffice.org/wiki/Documentation/How_Tos/Calc:_Functions_listed_by_category
http://wiki.services.openoffice.org/wiki/Documentation/How_Tos/Calc:_Functions_listed_by_category

Mathematical functions

Table 1: Mathematical functions

Syntax Description

ABS(number) Returns the absolute value of the given number.

ACOS(number) Returns the inverse cosine of the given number
in radians.

ACOSH(number) Returns the inverse hyperbolic cosine of the
given number in radians.

ACOT(number) Returns the inverse cotangent of the given
number in radians.

ACOTH(number) Returns the inverse hyperbolic cotangent of the
given number in radians.

ASIN(number) Returns the inverse sine of the given number in
radians.

ASINH(number) Returns the inverse hyperbolic sine of the given
number in radians.

ATAN(number) Returns the inverse tangent of the given
number in radians.

ATAN2(number_x;
number_y)

Returns the inverse tangent of the specified x
and y coordinates. Number_x is the value for the
x coordinate. Number_y is the value for the y
coordinate.

ATANH(number) Returns the inverse hyperbolic tangent of the
given number. (Angle is returned in radians.)

CEILING(number;
significance; mode)

Rounds the given number to the nearest integer
or multiple of significance. Significance is the
value to whose multiple of ten the value is to be
rounded up (.01, .1, 1, 10, etc.). Mode is an
optional value. If it is indicated and non-zero and
if the number and significance are negative,
rounding up is carried out based on that value.

COMBIN(count_1;
count_2)

Returns the number of combinations for a given
number of objects. Count_1 is the total number
of elements. Count_2 is the selected count from
the elements. This is the same as the nCr
function on a calculator.

Mathematical functions 5

Syntax Description

COMBINA(count_1;
count_2)

Returns the number of combinations for a given
number of objects (repetition included). Count_1
is the total number of elements. Count_2 is the
selected count from the elements.

CONVERT(value; "text";
"text")

Converts a currency value of a European
currency into Euros. Value is the amount in the
currency to be converted. Text is the official
abbreviation for the currency in question (for
example, "EUR"). The first Text parameter gives
the source value to be converted; the second
Text parameter gives the destination value. Both
text arguments must be within quotes.

COS(number) Returns the cosine of the given number (angle
in radians).

COSH(number) Returns the hyperbolic cosine of the given
number (angle in radians).

COT(number) Returns the cotangent of the given number
(angle in radians).

COTH(number) Returns the hyperbolic cotangent of the given
number (angle in radians).

COUNTBLANK(range) Returns the number of empty cells. Range is the
cell range in which the empty cells are counted.

COUNTIF(range;
criteria)

Returns the number of elements that meet
certain criteria within a cell range. Range is the
range to which the criteria are to be applied.
Criteria indicates the criteria in the form of a
number, a regular expression, or a character
string by which the cells are counted.

DEGREES(number) Converts the given number in radians to
degrees.

EVEN(number) Rounds the given number up to the nearest
even integer.

EXP(number) Returns e raised to the power of the given
number.

FACT(number) Returns the factorial of the given number.

FLOOR(number;
significance; mode)

Rounds the given number down to the nearest
multiple of significance. Significance is the
value to whose multiple of ten the number is to
be rounded down (.01, .1, 1, 10, etc.). Mode is
an optional value. If it is indicated and non-zero

6 Description of Functions

Syntax Description

and if the number and significance are negative,
rounding up is carried out based on that value.

GCD(numbers) Returns the greatest common divisor of one or
more integers. Numbers is a list of up to 30
numbers whose greatest common divisor is to be
calculated, separated by semi-colons.

GCD_ADD(numbers) Returns the greatest common divisor of a list of
numbers. Numbers is a list of up to 30 numbers
separated by semi-colons.

INT(number) Rounds the given number down to the nearest
integer.

ISEVEN(value) Returns TRUE if the given value is an even
integer, or FALSE if the value is odd. If the
value is not an integer, the function evaluates
only the integer part of the value.

ISODD(value) Returns TRUE if the given value is an odd
integer, or FALSE if the value is even. If the
value is not an integer, the function evaluates
only the integer part of the value.

LCM(integer_1;
integer_2; ...
integer_30)

Returns the least common multiple of one or
more integers. Integer_1; integer_2;...
integer_30 are integers whose lowest common
multiple is to be calculated.

LCM_ADD(numbers) Numbers is a list of up to 30 numbers separated
by semi-colons. The result is the lowest common
multiple of a list of numbers.

LN(number) Returns the natural logarithm based on the
constant e of the given number.

LOG(number; base) Returns the logarithm of the given number to
the specified base. Base is the base for the
logarithm calculation.

LOG10(number) Returns the base-10 logarithm of the given
number.

MOD(dividend; divisor) Returns the remainder after a number is divided
by a divisor. Dividend is the number which will
be divided by the divisor. Divisor is the number
by which to divide the dividend.

MROUND(number;
multiple)

The result is the nearest integer multiple of the
number.

Mathematical functions 7

Syntax Description

MULTINOMIAL
(number(s))

Returns the factorial of the sum of the
arguments divided by the product of the
factorials of the arguments. Number(s) is a list
of up to 30 numbers separated by semi-colons.

ODD(number) Rounds the given number up to the nearest odd
integer.

PI() Returns the value of PI to fourteen decimal
places.

POWER(base; power) Returns the result of a number raised to a power.
Base is the number that is to be raised to the
given power. Power is the exponent by which the
base is to be raised.

PRODUCT(number 1 to
30)

Multiplies all the numbers given as arguments
and returns the product. Number 1 to number
30 are up to 30 arguments whose product is to
be calculated, separated by semi-colons.

QUOTIENT(numerator;
denominator)

Returns the integer result of a division
operation. Numerator is the number that will be
divided. Denominator is the number the
numerator will be divided by.

RADIANS(number) Converts the given number in degrees to
radians.

RAND() Returns a random number between 0 and 1. This
number will recalculate every time data is
entered or F9 is pressed.

RANDBETWEEN
(bottom; top)

Returns an integer random number between
bottom and top (inclusive). This number will
recalculate when the Control+Shift+F9 key
combination is pressed.

ROUND(number; count) Rounds the given number to a certain number
of decimal places according to valid
mathematical criteria. Count (optional) is the
number of the places to which the value is to be
rounded. If the count parameter is negative,
only the whole number portion is rounded. It is
rounded to the place indicated by the count.

ROUNDDOWN(number;
count)

Rounds the given number. Count (optional) is
the number of digits to be rounded down to. If
the count parameter is negative, only the whole
number portion is rounded. It is rounded to the
place indicated by the count.

8 Description of Functions

Syntax Description

ROUNDUP(number;
count)

Rounds the given number up. Count (optional)
is the number of digits to which rounding up is
to be done. If the count parameter is negative,
only the whole number portion is rounded. It is
rounded to the place indicated by the count.

SERIESSUM(x; n; m;
coefficients)

Returns a sum of powers of the number x in
accordance with the following formula:

SERIESSUM(x;n;m;coefficients) =
coefficient_1*x^n + coefficient_2*x^(n+m) +
coefficient_3*x^(n+2m) +...+
coefficient_i*x^(n+(i-1)m).

x is the number as an independent variable. n is
the starting power. m is the increment.
Coefficients is a series of coefficients. For each
coefficient the series sum is extended by one
section. You can only enter coefficients using
cell references.

SIGN(number) Returns the sign of the given number. The
function returns the result 1 for a positive sign, –
1 for a negative sign, and 0 for zero.

SIN(number) Returns the sine of the given number (angle in
radians).

SINH(number) Returns the hyperbolic sine of the given number
(angle in radians).

SQRT(number) Returns the positive square root of the given
number. The value of the number must be
positive.

SQRTPI(number) Returns the square root of the product of the
given number and PI.

SUBTOTAL(function;
range)

Calculates subtotals. If a range already contains
subtotals, these are not used for further
calculations. Function is a value that stands for
another function such as Average, Count, Min,
Sum, Var. Range is the range whose cells are
included.

SUM(number_1;
number_2; ...
number_30)

Adds all the numbers in a range of cells.
Number_1; number_2;... number_30 are up to
30 arguments whose sum is to be calculated. You
can also enter a range using cell references.

SUMIF(range; criteria;
sum_range)

Adds the cells specified by a given criteria. The
search supports regular expressions. Range is

Mathematical functions 9

Syntax Description

the range to which the criteria are to be applied.
Criteria is the cell in which the search criterion
is shown, or the search criterion itself.
Sum_range is the range from which values are
summed; if it has not been indicated, the values
found in the Range are summed.

SUMSQ(number_1;
number_2; ...
number_30)

Calculates the sum of the squares of numbers
(totaling up of the squares of the arguments)
Number_1; number_2;... number_30 are up to
30 arguments, the sum of whose squares is to be
calculated.

TAN(number) Returns the tangent of the given number (angle
in radians).

TANH(number) Returns the hyperbolic tangent of the given
number (angle in radians).

TRUNC(number; count) Truncates a number to an integer by removing
the fractional part of the number according to
the precision specified in Tools > Options >
OpenOffice.org Calc > Calculate. Number is
the number whose decimal places are to be cut
off. Count is the number of decimal places which
are not cut off.

Financial analysis functions

A note about dates
Date values used as parameters for Calc’s financial functions must be
entered in a specific manner. For example, a date (entered in the US
form) must be surrounded by quotes and with periods separating each
value. To represent August 6, 2004, or 8/6/04, you would enter
“08.06.2004”. If you do not enter the date values as required by the
function, you will not get the correct results. Date formats are locale
specific; check the Help for the acceptable formatting.

A note about interest rates
You can enter interest rates in either of two ways:

• As a decimal. To enter an interest rate as a decimal, divide it by
100 before entering it into a function. For example, to compute a
loan with a 3.25% interest rate, enter .0325 into the function.

10 Description of Functions

• As a percentage. To enter an interest rate as a percentage, type in
the interest rate followed by the % key. For example, to compute a
loan with a 3.25% interest rate, enter 3.25% into the function.

If you enter it as 3.25, the function will treat it as a 325% interest rate.

Accounting systems vary in the number of days in a month or a year
used in calculations. The following table gives the integers used for the
basis parameter used in some of the financial analysis functions.

Table 2: Basis calculation types

Basis Calculation

0 or
missing

US method (NASD), 12 months of 30 days each.

1 Exact number of days in months, exact number of days in year.

2 Exact number of days in month, year has 360 days.

3 Exact number of days in month, year has 365 days.

4 European method, 12 months of 30 days each.

Table 3: Financial analysis functions

Syntax Description

ACCRINT(issue;
first_interest; settlement;
rate; par; frequency; basis)

Calculates the accrued interest of a security in
the case of periodic payments. Issue is the
issue date of the security. First_interest is the
first interest date of the security. Settlement
is the maturity date. Rate is the annual
nominal rate of interest (coupon interest rate).
Par is the par value of the security. Frequency
is the number of interest payments per year
(1, 2 or 4). Basis indicates how the year is to
be calculated.

ACCRINTM(issue;
settlement; rate; par;
basis)

Calculates the accrued interest of a security in
the case of one-off payment at the settlement
date. Issue is the issue date of the security.
Settlement is the maturity date. Rate is the
annual nominal rate of interest (coupon
interest rate). Par is the par value of the
security. Basis indicates how the year is to be
calculated.

AMORDEGRC(cost;
date_purchased;
first_period; salvage;

Calculates the amount of depreciation for a
settlement period as degressive amortization.
Unlike AMORLINC, a depreciation coefficient

Financial analysis functions 11

Syntax Description

period; rate; basis) that is independent of the depreciable life is
used here. Cost is the acquisition cost.
Date_purchased is the date of acquisition.
First_period is the end date of the first
settlement period. Salvage is the salvage
value of the capital asset at the end of the
depreciable life. Period is the settlement
period to be considered. Rate is the rate of
depreciation. Basis indicates how the year is
to be calculated.

AMORLINC(cost;
date_purchased;
first_period; salvage;
period; rate; basis)

Calculates the amount of depreciation for a
settlement period as linear amortization. If the
capital asset is purchased during the
settlement period, the proportional amount of
depreciation is considered. Cost is the
acquisition cost. Date_purchased is the date
of acquisition. First_period is the end date of
the first settlement period. Salvage is the
salvage value of the capital asset at the end of
the depreciable life. Period is the settlement
period to be considered. Rate is the rate of
depreciation. Basis indicates how the year is
to be calculated.

COUPDAYBS(settlement;
maturity; frequency; basis)

Returns the number of days from the first day
of interest payment on a security until the
settlement date. Settlement is the date of
purchase of the security. Maturity is the date
on which the security matures (expires).
Frequency is the number of interest
payments per year (1, 2 or 4). Basis indicates
how the year is to be calculated.

COUPDAYS(settlement;
maturity; frequency; basis)

Returns the number of days in the current
interest period in which the settlement date
falls. Settlement is the date of purchase of
the security. Maturity is the date on which the
security matures (expires). Frequency is the
number of interest payments per year (1, 2 or
4). Basis indicates how the year is to be
calculated.

COUPDAYSNC(settlement;
maturity; frequency; basis)

Returns the number of days from the
settlement date until the next interest date.
Settlement is the date of purchase of the
security. Maturity is the date on which the
security matures (expires). Frequency is the

12 Description of Functions

Syntax Description

number of interest payments per year (1, 2 or
4). Basis indicates how the year is to be
calculated.

COUPNCD(settlement;
maturity; frequency; basis)

Returns the date of the first interest date after
the settlement date, and formats the result as
a date. Settlement is the date of purchase of
the security. Maturity is the date on which the
security matures (expires). Frequency is the
number of interest payments per year (1, 2 or
4). Basis indicates how the year is to be
calculated.

COUPNUM(settlement;
maturity; frequency; basis)

Returns the number of coupons (interest
payments) between the settlement date and
the maturity date. Settlement is the date of
purchase of the security. Maturity is the date
on which the security matures (expires).
Frequency is the number of interest
payments per year (1, 2 or 4). Basis indicates
how the year is to be calculated.

COUPPCD(settlement;
maturity; frequency; basis)

Returns the date of the interest date prior to
the settlement date, and formats the result as
a date. Settlement is the date of purchase of
the security. Maturity is the date on which the
security matures (expires). Frequency is the
number of interest payments per year (1, 2 or
4). Basis indicates how the year is to be
calculated.

CUMIPMT(rate; NPER;
PV; S; E; type)

Calculates the cumulative interest payments
(the total interest) for an investment based on
a constant interest rate. Rate is the periodic
interest rate. NPER is the payment period
with the total number of periods. NPER can
also be a non-integer value. The rate and
NPER must refer to the same unit, and thus
both must be calculated annually or monthly.
PV is the current value in the sequence of
payments. S is the first period. E is the last
period. Type is the due date of the payment at
the beginning (1) or end (0) of each period.

CUMIPMT_ADD(rate;
NPER; PV; start_period;
end_period; type)

Calculates the accumulated interest for a
period. Rate is the interest rate for each
period. NPER is the total number of payment
periods. The rate and NPER must refer to the

Financial analysis functions 13

Syntax Description

same unit, and thus both must be calculated
annually or monthly. PV is the current value.
Start_period the first payment period for the
calculation. End_period the last payment
period for the calculation. Type is the due date
of the payment at the beginning (1) or end (0)
of each period.

CUMPRINC(rate; NPER;
PV; S; E; type)

Returns the cumulative interest paid for an
investment period with a constant interest
rate. Rate is the periodic interest rate. NPER
is the payment period with the total number of
periods. NPER can also be a non-integer value.
The rate and NPER must refer to the same
unit, and thus both must be calculated
annually or monthly. PV is the current value in
the sequence of payments. S is the first period.
E is the last period. Type is the due date of the
payment at the beginning (1) or end (0) of
each period.

CUMPRINC_ADD(rate;
NPER; PV; start_period;
end_period; type)

Calculates the cumulative redemption of a
loan in a period. Rate is the interest rate for
each period. NPER is the total number of
payment periods. The rate and NPER must
refer to the same unit, and thus both must be
calculated annually or monthly. PV is the
current value. Start period is the first
payment period for the calculation. End
period is the last payment period for the
calculation. Type is the due date of the
payment at the beginning (1) or end (0) of
each period.

DB(cost; salvage; life;
period; month)

Returns the depreciation of an asset for a
specified period using the double-declining
balance method. Cost is the initial cost of an
asset. Salvage is the value of an asset at the
end of the depreciation. Life defines the period
over which an asset is depreciated. Period is
the length of each period. The life must be
entered in the same date unit as the
depreciation period. Month (optional) denotes
the number of months for the first year of
depreciation.

DDB(cost; salvage; life;
period; factor)

Returns the depreciation of an asset for a
specified period using the arithmetic-declining

14 Description of Functions

Syntax Description

method. Note that the book value will never
reach zero under this calculation type. Cost
fixes the initial cost of an asset. Salvage fixes
the value of an asset at the end of its life. Life
is the number of periods defining how long the
asset is to be used. Period defines the length
of the period. The period must be entered in
the same time unit as the life. Factor
(optional) is the factor by which depreciation
decreases.

DISC(settlement;
maturity; price;
redemption; basis)

Calculates the allowance (discount) of a
security as a percentage. Settlement is the
date of purchase of the security. Maturity is
the date on which the security matures
(expires). Price is the price of the security per
100 currency units of par value. Redemption
is the redemption value of the security per 100
currency units of par value. Basis indicates
how the year is to be calculated.

DOLLARDE(fractional
_dollar; fraction)

Converts a quotation that has been given as a
decimal fraction into a decimal number.
Fractional_dollar is a number given as a
decimal fraction. (In this number, the decimal
value is the numerator of the fraction.)
Fraction is a whole number that is used as
the denominator of the decimal fraction.

DOLLARFR(decimal
_dollar; fraction)

Converts a quotation that has been given as a
decimal number into a mixed decimal fraction.
The decimal of the result is the numerator of
the fraction that would have Fraction as the
denominator. Decimal_dollar is a decimal
number. Fraction is a whole number that is
used as the denominator of the decimal
fraction.

DURATION(rate; PV; FV) Calculates the number of periods required by
an investment to attain the desired value.
Rate (a constant) is the interest rate to be
calculated for the entire duration. Entering
the interest rate divided by the periods per
year, can calculate the interest after each
period. PV is the present value. FV is the
desired future value of the investment.

DURATION_ADD
(settlement; maturity;

Calculates the duration of a fixed interest
security in years. Settlement is the date of

Financial analysis functions 15

Syntax Description

coupon; yield; frequency;
basis)

purchase of the security. Maturity is the date
on which the security matures (expires).
Coupon is the annual coupon interest rate
(nominal rate of interest). Yield is the annual
yield of the security. Frequency is the number
of interest payments per year (1, 2 or 4). Basis
indicates how the year is to be calculated.

EFFECT_ADD(nominal
_rate; Npery)

Calculates the effective annual rate of interest
on the basis of the nominal interest rate and
the number of interest payments per annum.
Nominal interest refers to the amount of
interest due at the end of a calculation period.
Nominal_rate is the annual nominal rate of
interest. Npery is the number of interest
payments per year.

EFFECTIVE(NOM; P) Calculates the effective annual rate of interest
on the basis of the nominal interest rate and
the number of interest payments per annum.
Nominal interest refers to the amount of
interest due at the end of a calculation period.
NOM is the nominal interest. P is the number
of interest payment periods per year.

FV(rate; NPER; PMT; PV;
type)

Returns the future value of an investment
based on periodic, constant payments and a
constant interest rate. Rate is the periodic
interest rate. NPER is the total number of
periods. PMT is the annuity paid regularly per
period. PV (optional) is the present cash value
of an investment. Type (optional) defines
whether the payment is due at the beginning
(1) or the end (0) of a period.

FVSCHEDULE(principal;
schedule)

Calculates the accumulated value of the
starting capital for a series of periodically
varying interest rates. Principal is the
starting capital. Schedule is a series of
interest rates. Schedule has to be entered
with cell references.

INTRATE(settlement;
maturity; investment;
redemption; basis)

Calculates the annual interest rate that results
when a security (or other item) is purchased at
an investment value and sold at a redemption
value with no interest being paid. Settlement
is the date of purchase of the security.
Maturity is the date on which the security is

16 Description of Functions

Syntax Description

sold. Investment is the purchase price.
Redemption is the selling price. Basis
indicates how the year is to be calculated.

IPMT(rate; period; NPER;
PV; FV; type)

Calculates the periodic amortization for an
investment with regular payments and a
constant interest rate. Rate is the periodic
interest rate. Period is the period for which
the compound interest is calculated. NPER is
the total number of periods during which
annuity is paid. Period=NPER, if compound
interest for the last period is calculated. PV is
the present cash value in sequence of
payments. FV (optional) is the desired value
(future value) at the end of the periods. Type
(optional) defines whether the payment is due
at the beginning (1) or the end (0) of a period.

IRR(values; guess) Calculates the internal rate of return for an
investment. The values represent cash flow
values at regular intervals; at least one value
must be negative (payments), and at least one
value must be positive (income). Values is an
array containing the values. Guess (optional)
is the estimated value. If you can provide only
a few values, you should provide an initial
guess to enable the iteration.

ISPMT(rate; period;
total_periods; invest)

Calculates the level of interest for unchanged
amortization installments. Rate sets the
periodic interest rate. Period is the number of
installments for calculation of interest.
Total_periods is the total number of
installment periods. Invest is the amount of
the investment.

MDURATION(settlement;
maturity; coupon; yield;
frequency; basis)

Calculates the modified Macauley duration of
a fixed interest security in years. Settlement
is the date of purchase of the security.
Maturity is the date on which the security
matures (expires). Coupon is the annual
nominal rate of interest (coupon interest rate)
Yield is the annual yield of the security.
Frequency is the number of interest
payments per year (1, 2 or 4). Basis indicates
how the year is to be calculated.

MIRR(values; investment; Calculates the modified internal rate of return

Financial analysis functions 17

Syntax Description

reinvest_rate) of a series of investments. Values corresponds
to the array or the cell reference for cells
whose content corresponds to the payments.
Investment is the rate of interest of the
investments (the negative values of the array)
Reinvest_rate is the rate of interest of the
reinvestment (the positive values of the array).

NOMINAL(effective_rate;
Npery)

Calculates the yearly nominal interest rate,
given the effective rate and the number of
compounding periods per year. Effective_rate
is the effective interest rate Npery is the
number of periodic interest payments per
year.

NOMINAL_ADD(effective_
rate; Npery)

Calculates the yearly nominal rate of interest,
given the effective rate and the number of
compounding periods per year. Effective_rate
is the effective annual rate of interest. Npery
is the number of interest payments per year.

NPER(rate; PMT; PV; FV;
type)

Returns the number of periods for an
investment based on periodic, constant
payments and a constant interest rate. Rate is
the periodic interest rate. PMT is the constant
annuity paid in each period. PV is the present
value (cash value) in a sequence of payments.
FV (optional) is the future value, which is
reached at the end of the last period. Type
(optional) defines whether the payment is due
at the beginning (1) or the end (0) of a period.

NPV(Rate; value_1;
value_2; ... value_30)

Returns the net present value of an investment
based on a series of periodic cash flows and a
discount rate. Rate is the discount rate for a
period. Value_1; value_2;... value_30 are
values representing deposits or withdrawals.

ODDFPRICE(settlement;
maturity; issue;
first_coupon; rate; yield;
redemption; frequency;
basis)

Calculates the price per 100 currency units
par value of a security, if the first interest date
falls irregularly. Settlement is the date of
purchase of the security. Maturity is the date
on which the security matures (expires). Issue
is the date of issue of the security.
First_coupon is the first interest date of the
security. Rate is the annual rate of interest.
Yield is the annual yield of the security.
Redemption is the redemption value per 100

18 Description of Functions

Syntax Description

currency units of par value. Frequency is the
number of interest payments per year (1, 2 or
4). Basis indicates how the year is to be
calculated.

ODDFYIELD(settlement;
maturity; issue;
first_coupon; rate; price;
redemption; frequency;
basis)

Calculates the yield of a security if the first
interest date falls irregularly. Settlement is
the date of purchase of the security. Maturity
is the date on which the security matures
(expires). Issue is the date of issue of the
security. First_coupon is the first interest
period of the security. Rate is the annual rate
of interest. Price is the price of the security.
Redemption is the redemption value per 100
currency units of par value. Frequency is the
number of interest payments per year (1, 2 or
4). Basis indicates how the year is to be
calculated.

ODDLPRICE(settlement;
maturity; last_interest;
rate; yield; redemption;
frequency; basis)

Calculates the price per 100 currency units
par value of a security, if the last interest date
falls irregularly. Settlement is the date of
purchase of the security. Maturity is the date
on which the security matures (expires).
Last_interest is the last interest date of the
security. Rate is the annual rate of interest.
Yield is the annual yield of the security.
Redemption is the redemption value per 100
currency units of par value. Frequency is the
number of interest payments per year (1, 2 or
4). Basis indicates how the year is to be
calculated.

ODDLYIELD(settlement;
maturity; last_interest;
rate; price; redemption;
frequency; basis)

Calculates the yield of a security if the last
interest date falls irregularly. Settlement is
the date of purchase of the security. Maturity
is the date on which the security matures
(expires). Last_interest is the last interest
date of the security. Rate is the annual rate of
interest. Price is the price of the security.
Redemption is the redemption value per 100
currency units of par value. Frequency is the
number of interest payments per year (1, 2 or
4). Basis indicates how the year is to be
calculated.

PMT(rate; NPER; PV; FV;
type)

Returns the periodic payment for an annuity
with constant interest rates. Rate is the

Financial analysis functions 19

Syntax Description

periodic interest rate. NPER is the number of
periods in which annuity is paid. PV is the
present value (cash value) in a sequence of
payments. FV (optional) is the desired value
(future value) to be reached at the end of the
periodic payments. Type (optional) defines
whether the payment is due at the beginning
(1) or the end (0) of a period.

PPMT(rate; period; NPER;
PV; FV; type)

Returns for a given period the payment on the
principal for an investment that is based on
periodic and constant payments and a
constant interest rate. Rate is the periodic
interest rate. Period is the amortization
period. NPER is the total number of periods
during which annuity is paid. PV is the present
value in the sequence of payments. FV
(optional) is the desired (future) value. Type
(optional) defines whether the payment is due
at the beginning (1) or the end (0) of a period.

PRICE(settlement;
maturity; rate; yield;
redemption; frequency;
basis)

Calculates the market value of a fixed interest
security with a par value of 100 currency units
as a function of the forecast yield. Settlement
is the date of purchase of the security.
Maturity is the date on which the security
matures (expires). Rate is the annual nominal
rate of interest (coupon interest rate). Yield is
the annual yield of the security. Redemption
is the redemption value per 100 currency units
of par value. Frequency is the number of
interest payments per year (1, 2 or 4). Basis
indicates how the year is to be calculated.

PRICEDISC(settlement;
maturity; discount;
redemption; basis)

Calculates the price per 100 currency units of
par value of a non-interest-bearing security.
Settlement is the date of purchase of the
security. Maturity is the date on which the
security matures (expires). Discount is the
discount of a security as a percentage.
Redemption is the redemption value per 100
currency units of par value. Basis indicates
how the year is to be calculated.

PRICEMAT(settlement;
maturity; issue; rate;
yield; basis)

Calculates the price per 100 currency units of
par value of a security, that pays interest on
the maturity date. Settlement is the date of
purchase of the security. Maturity is the date

20 Description of Functions

Syntax Description

on which the security matures (expires). Issue
is the date of issue of the security. Rate is the
interest rate of the security on the issue date.
Yield is the annual yield of the security. Basis
indicates how the year is to be calculated.

PV(rate; NPER; PMT; FV;
type)

Returns the present value of an investment
resulting from a series of regular payments.
Rate defines the interest rate per period.
NPER is the total number of payment periods.
PMT is the regular payment made per period.
FV (optional) defines the future value
remaining after the final installment has been
made. Type (optional) defines whether the
payment is due at the beginning (1) or the end
(0) of a period.

RATE(NPER; PMT; PV; FV;
type; guess)

Returns the constant interest rate per period
of an annuity. NPER is the total number of
periods, during which payments are made
(payment period). PMT is the constant
payment (annuity) paid during each period. PV
is the cash value in the sequence of payments.
FV (optional) is the future value, which is
reached at the end of the periodic payments.
Type (optional) defines whether the payment
is due at the beginning (1) or the end (0) of a
period. Guess (optional) determines the
estimated value of the interest with iterative
calculation.

RECEIVED(settlement;
maturity; investment;
discount; basis)

Calculates the amount received that is paid for
a fixed-interest security at a given point in
time. Settlement is the date of purchase of
the security. Maturity is the date on which the
security matures. Investment is the purchase
sum. Discount is the percentage discount on
acquisition of the security. Basis indicates how
the year is to be calculated.

RRI(P; PV; FV) Calculates the interest rate resulting from the
profit (return) of an investment. P is the
number of periods needed for calculating the
interest rate. PV is the present value (must be
>0). FV is determines what is desired as the
cash value of the deposit.

SLN(cost; salvage; life) Returns the straight-line depreciation of an

Financial analysis functions 21

Syntax Description

asset for one period. The amount of the
depreciation is constant during the
depreciation period. Cost is the initial cost of
an asset. Salvage is the value of an asset at
the end of the depreciation. Life is the
depreciation period determining the number
of periods in the depreciation of the asset.

SYD(cost; salvage; life;
period)

Returns the arithmetic-declining depreciation
rate. Use this function to calculate the
depreciation amount for one period of the total
depreciation span of an object. Arithmetic
declining depreciation reduces the
depreciation amount from period to period by
a fixed sum. Cost is the initial cost of an asset.
Salvage is the value of an asset after
depreciation. Life is the period fixing the time
span over which an asset is depreciated.
Period defines the period for which the
depreciation is to be calculated.

TBILLEQ(settlement;
maturity; discount)

Calculates the annual return on a treasury bill.
Settlement is the date of purchase of the
security. Maturity is the date on which the
security matures (expires). (The settlement
and maturity date must be in the same year.)
Discount is the percentage discount on
acquisition of the security.

TBILLPRICE(settlement;
maturity; discount)

Calculates the price of a treasury bill per 100
currency units. Settlement is the date of
purchase of the security. Maturity is the date
on which the security matures (expires).
Discount is the percentage discount upon
acquisition of the security.

TBILLYIELD(settlement;
maturity; price)

Calculates the yield of a treasury bill.
Settlement is the date of purchase of the
security. Maturity is the date on which the
security matures (expires). Price is the price
(purchase price) of the treasury bill per 100
currency units of par value.

VDB(cost; salvage; life;
start; end; factor; type)

Returns the depreciation of an asset for a
specified or partial period using a variable
declining balance method. Cost is the initial
value of an asset. Salvage is the value of an
asset at the end of the depreciation. Life is the

22 Description of Functions

Syntax Description

depreciation duration of the asset. Start is the
start of the depreciation entered in the same
date unit as the life. End is the end of the
depreciation. Factor (optional) is the
depreciation factor. FA=2 is double rate
depreciation. Type (optional) defines whether
the payment is due at the beginning (1) or the
end (0) of a period.

XIRR(values; dates; guess) Calculates the internal rate of return for a list
of payments which take place on different
dates. The calculation is based on a 365 days
per year basis, ignoring leap years. If the
payments take place at regular intervals, use
the IRR function. Values and dates are a
series of payments and the series of associated
date values entered as cell references. Guess
(optional) is a guess for the internal rate of
return. The default is 10%.

XNPV(rate; values; dates) Calculates the capital value (net present
value) for a list of payments which take place
on different dates. The calculation is based on
a 365 days per year basis, ignoring leap years.
If the payments take place at regular intervals,
use the NPV function. Rate is the internal rate
of return for the payments. Values and dates
are a series of payments and the series of
associated date values entered as cell
references.

YIELD(settlement;
maturity; rate; price;
redemption; frequency;
basis)

Calculates the yield of a security. Settlement
is the date of purchase of the security.
Maturity is the date on which the security
matures (expires). Rate is the annual rate of
interest. Price is the price (purchase price) of
the security per 100 currency units of par
value. Redemption is the redemption value
per 100 currency units of par value.
Frequency is the number of interest
payments per year (1, 2 or 4). Basis indicates
how the year is to be calculated.

YIELDDISC(settlement;
maturity; price;
redemption; basis)

Calculates the annual yield of a non-interest-
bearing security. Settlement is the date of
purchase of the security. Maturity is the date
on which the security matures (expires). Price
is the price (purchase price) of the security

Financial analysis functions 23

Syntax Description

per 100 currency units of par value.
Redemption is the redemption value per 100
currency units of par value. Basis indicates
how the year is to be calculated.

YIELDMAT(settlement;
maturity; issue; rate;
price; basis)

Calculates the annual yield of a security, the
interest of which is paid on the date of
maturity. Settlement is the date of purchase
of the security. Maturity is the date on which
the security matures (expires). Issue is the
date of issue of the security. Rate is the
interest rate of the security on the issue date.
Price is the price (purchase price) of the
security per 100 currency units of par value.
Basis indicates how the year is to be
calculated.

Statistical analysis functions
Calc includes over 70 statistical functions which enable the evaluation
of data from simple arithmetic calculations, such as averaging, to
advanced distribution and probability computations. Several other
statistics-based functions are available through the Add-ins which are
noted at the end of this appendix.

Table 4: Statistical analysis functions

Syntax Description

AVEDEV(number1;
number2; ... number_30)

Returns the average of the absolute deviations
of data points from their mean. Displays the
diffusion in a data set. Number_1; number_2;
... number_30 are values or ranges that
represent a sample. Each number can also be
replaced by a reference.

AVERAGE(number_1;
number_2; ... number_30)

Returns the average of the arguments.
Number_1; number_2; ... number_30 are
numerical values or ranges. Text is ignored.

AVERAGEA(value_1;
value_2; ... value_30)

Returns the average of the arguments. The
value of a text is 0. Value_1; value_2; ...
value_30 are values or ranges.

B(trials; SP; T_1; T_2) Returns the probability of a sample with
binomial distribution. Trials is the number of
independent trials. SP is the probability of
success on each trial. T_1 defines the lower

24 Description of Functions

Syntax Description

limit for the number of trials. T_2 (optional)
defines the upper limit for the number of trials.

BETADIST(number; alpha;
beta; start; end)

Returns the cumulative beta probability
density function. Number is the value between
Start and End at which to evaluate the
function. Alpha is a parameter to the
distribution. Beta is a parameter to the
distribution. Start (optional) is the lower
bound for number. End (optional) is the upper
bound for number.

BETAINV(number; alpha;
beta; start; end)

Returns the inverse of the cumulative beta
probability density function. Number is the
value between Start and End at which to
evaluate the function. Alpha is a parameter to
the distribution. Beta is a parameter to the
distribution. Start (optional) is the lower
bound for number. End (optional) is the upper
bound for number.

BINOMDIST(X; trials; SP;
C)

Returns the individual term binomial
distribution probability. X is the number of
successes in a set of trials. Trials is the
number of independent trials. SP is the
probability of success on each trial. C = 0
calculates the probability of a single event and
C = 1 calculates the cumulative probability.

CHIDIST(number;
degrees_freedom)

Returns the probability value that a hypothesis
will be confirmed from the indicated chi
square. The probability determined by
CHIDIST can also be determined by CHITEST.
Number is the chi-square value of the random
sample used to determine the error probability.
Degrees_freedom is the degrees of freedom
of the experiment.

CHIINV(number;
degrees_freedom)

Returns the inverse of the one-tailed
probability of the chi-squared distribution.
Number is the value of the error probability.
Degrees_freedom is the degrees of freedom
of the experiment.

CHITEST(data_B; data_E) Returns the chi-square distribution from a
random distribution of two test series based on
the chi-square test for independence. The
probability determined by CHITEST can also
be determined with CHIDIST, in which case the

Statistical analysis functions 25

Syntax Description

chi square of the random sample must then be
passed as a parameter instead of the data row.
Data_B is the array of the observations.
Data_E is the range of the expected values.

CONFIDENCE(alpha;
STDEV; size)

Returns the (1-alpha) confidence interval for a
normal distribution. Alpha is the level of the
confidence interval. STDEV is the standard
deviation for the total population. Size is the
size of the total population.

CORREL(data_1; data_2) Returns the correlation coefficient between
two data sets. Data_1 is the first data set.
Data_2 is the second data set.

COUNT(value_1;
value_2; ... value_30)

Counts how many numbers are in the list of
arguments. Text entries are ignored. Value_1;
value_2; ... value_30 are values or ranges
which are to be counted.

COUNTA(value_1;
value_2; ... value_30)

Counts how many values are in the list of
arguments. Text entries are also counted, even
when they contain an empty string of length 0.
If an argument is an array or reference, empty
cells within the array or reference are ignored.
value_1; value_2; ... value_30 are up to 30
arguments representing the values to be
counted.

COVAR(data_1; data_2) Returns the covariance of the product of
paired deviations. Data_1 is the first data set.
Data_2 is the second data set.

CRITBINOM(trials; SP;
alpha)

Returns the smallest value for which the
cumulative binomial distribution is less than or
equal to a criterion value. Trials is the total
number of trials. SP is the probability of
success for one trial. Alpha is the threshold
probability to be reached or exceeded.

DEVSQ(number_1;
number_2; ... number_30)

Returns the sum of squares of deviations based
on a sample mean. Number_1; number_2; ...
number_30 are numerical values or ranges
representing a sample.

EXPONDIST(number;
lambda; C)

Returns the exponential distribution. Number
is the value of the function. Lambda is the
parameter value. C is a logical value that
determines the form of the function. C = 0
calculates the density function, and C = 1

26 Description of Functions

Syntax Description

calculates the distribution.

FDIST(number;
degrees_freedom_1;
degrees_freedom_2)

Calculates the values of an F probability
distribution. Number is the value for which
the F distribution is to be calculated.
Degrees_freedom_1 is the degrees of
freedom in the numerator in the F distribution.
Degrees_freedom_2 is the degrees of
freedom in the denominator in the F
distribution.

FINV(number;
degrees_freedom_1;
degrees_freedom_2)

Returns the inverse of the F probability
distribution. Number is probability value for
which the inverse F distribution is to be
calculated. Degrees_freedom_1 is the number
of degrees of freedom in the numerator of the
F distribution. Degrees_freedom_2 is the
number of degrees of freedom in the
denominator of the F distribution.

FISHER(number) Returns the Fisher transformation for the
given number and creates a function close to
a normal distribution.

FISHERINV(number) Returns the inverse of the Fisher
transformation for the given number and
creates a function close to a normal
distribution.

FORECAST(value; data_Y;
data_X)

Extrapolates future values based on existing x
and y values. Value is the x value, for which
the y value of the linear regression is to be
returned. Data_Y is the array or range of
known y’s. Data_X is the array or range of
known x’s. Does not work for exponential
functions.

FTEST(data_1; data_2) Returns the result of an F test. Data_1 is the
first record array. Data_2 is the second record
array.

GAMMADIST(number;
alpha; beta; C)

Returns the values of a Gamma cumulative
distribution. Number is the value for which
the Gamma distribution is to be calculated.
Alpha is the parameter Alpha of the Gamma
distribution. Beta is the parameter Beta of the
Gamma distribution. C = 0 calculates the
density function, and C = 1 calculates the
distribution.

Statistical analysis functions 27

Syntax Description

GAMMAINV(number;
alpha; beta)

Returns the inverse of the Gamma cumulative
distribution. This function allows you to search
for variables with different distribution.

Number is the probability value for which the
inverse Gamma distribution is to be calculated.
Alpha is the parameter Alpha of the Gamma
distribution. Beta is the parameter Beta of the
Gamma distribution.

GAMMALN(number) Returns the natural logarithm of the Gamma
function, G(x), for the given number.

GAUSS(number) Returns the standard normal cumulative
distribution for the given number.

GEOMEAN(number_1;
number_2; ... number_30)

Returns the geometric mean of a sample.
Number_1; number_2; ... number_30 are
numerical arguments or ranges that represent
a random sample.

HARMEAN(number_1;
number_2; ... number_30)

Returns the harmonic mean of a data set.
Number_1; number_2; ... number_30 are
values or ranges that can be used to calculate
the harmonic mean.

HYPGEOMDIST(X;
n_sample; successes;
n_population)

Returns the hypergeometric distribution. X is
the number of results achieved in the random
sample. N_sample is the size of the random
sample. Successes is the number of possible
results in the total population. N_population
is the size of the total population.

INTERCEPT(data_Y;
data_X)

Calculates the y-value at which a line will
intersect the y-axis by using known x-values
and y-values. Data_Y is the dependent set of
observations or data. Data_X is the
independent set of observations or data.

Names, arrays or references containing
numbers must be used here. Numbers can also
be entered directly.

KURT(number_1;
number_2; ... number_30)

Returns the kurtosis of a data set (at least 4
values required). Number_1; number_2; ...
number_30 are numerical arguments or
ranges representing a random sample of
distribution.

LARGE(data; rank_c) Returns the Rank_c-th largest value in a data
set. Data is the cell range of data. Rank_c is

28 Description of Functions

Syntax Description

the ranking of the value (2nd largest, 3rd
largest, etc.) written as an integer.

LOGINV(number; mean;
STDEV)

Returns the inverse of the lognormal
distribution for the given Number, a
probability value. Mean is the arithmetic mean
of the standard logarithmic distribution.
STDEV is the standard deviation of the
standard logarithmic distribution.

LOGNORMDIST(number;
mean; STDEV)

Returns the cumulative lognormal distribution
for the given Number, a probability value.
Mean is the mean value of the standard
logarithmic distribution. STDEV is the
standard deviation of the standard logarithmic
distribution.

MAX(number_1;
number_2; ... number_30)

Returns the maximum value in a list of
arguments. Number_1; number_2; ...
number_30 are numerical values or ranges.

MAXA(value_1; value_2; ...
value_30)

Returns the maximum value in a list of
arguments. Unlike MAX, text can be entered.
The value of the text is 0. Value_1; value_2; ...
value_30 are values or ranges.

MEDIAN(number_1;
number_2; ... number_30)

Returns the median of a set of numbers.
Number_1; number_2; ... number_30 are
values or ranges, which represent a sample.
Each number can also be replaced by a
reference.

MIN(number_1;
number_2; ... number_30)

Returns the minimum value in a list of
arguments. Number_1; number_2; ...
number_30 are numerical values or ranges.

MINA(value_1; value_2; ...
value_30)

Returns the minimum value in a list of
arguments. Here text can also be entered. The
value of the text is 0. Value_1; value_2; ...
value_30 are values or ranges.

MODE(number_1;
number_2; ... number_30)

Returns the most common value in a data set.
Number_1; number_2; ... number_30 are
numerical values or ranges. If several values
have the same frequency, it returns the
smallest value. An error occurs when a value
does not appear twice.

NEGBINOMDIST(X; R;
SP)

Returns the negative binomial distribution. X is
the value returned for unsuccessful tests. R is

Statistical analysis functions 29

Syntax Description

the value returned for successful tests. SP is
the probability of the success of an attempt.

NORMDIST(number;
mean; STDEV; C)

Returns the normal distribution for the given
Number in the distribution. Mean is the mean
value of the distribution. STDEV is the
standard deviation of the distribution. C = 0
calculates the density function, and C = 1
calculates the distribution.

NORMINV(number;
mean; STDEV)

Returns the inverse of the normal distribution
for the given Number in the distribution.
Mean is the mean value in the normal
distribution. STDEV is the standard deviation
of the normal distribution.

NORMSDIST(number) Returns the standard normal cumulative
distribution for the given Number.

NORMSINV(number) Returns the inverse of the standard normal
distribution for the given Number, a
probability value.

PEARSON(data_1; data_2) Returns the Pearson product moment
correlation coefficient r. Data_1 is the array of
the first data set. Data_2 is the array of the
second data set.

PERCENTILE(data; alpha) Returns the alpha-percentile of data values in
an array. Data is the array of data. Alpha is
the percentage of the scale between 0 and 1.

PERCENTRANK(data;
value)

Returns the percentage rank (percentile) of the
given value in a sample. Data is the array of
data in the sample.

PERMUT(count_1;
count_2)

Returns the number of permutations for a
given number of objects. Count_1 is the total
number of objects. Count_2 is the number of
objects in each permutation.

PERMUTATIONA(count_1;
count_2)

Returns the number of permutations for a
given number of objects (repetition allowed).
Count_1 is the total number of objects.
Count_2 is the number of objects in each
permutation.

PHI(number) Returns the values of the distribution function
for a standard normal distribution for the given
Number.

30 Description of Functions

Syntax Description

POISSON(number; mean;
C)

Returns the Poisson distribution for the given
Number. Mean is the middle value of the
Poisson distribution. C = 0 calculates the
density function, and C = 1 calculates the
distribution.

PROB(data; probability:
start; end)

Returns the probability that values in a range
are between two limits. Data is the array or
range of data in the sample. Probability is the
array or range of the corresponding
probabilities. Start is the start value of the
interval whose probabilities are to be summed.
End (optional) is the end value of the interval
whose probabilities are to be summed. If this
parameter is missing, the probability for the
Start value is calculated.

QUARTILE(data; type) Returns the quartile of a data set. Data is the
array of data in the sample. Type is the type of
quartile. (0 = Min, 1 = 25%, 2 = 50%
(Median), 3 = 75% and 4 = Max.)

RANK(value; data; type) Returns the rank of the given Value in a
sample. Data is the array or range of data in
the sample. Type (optional) is the sequence
order, either ascending (0) or descending (1).

RSQ(data_Y; data_X) Returns the square of the Pearson correlation
coefficient based on the given values. Data_Y
is an array or range of data points. Data_X is
an array or range of data points.

SKEW(number_1;
number_2; ... number_30)

Returns the skewness of a distribution.
Number_1; number_2; ... number_30 are
numerical values or ranges.

SLOPE(data_Y; data_X) Returns the slope of the linear regression line.
Data_Y is the array or matrix of Y data.
Data_X is the array or matrix of X data.

SMALL(data; rank_c) Returns the Rank_c-th smallest value in a data
set. Data is the cell range of data. Rank_c is
the rank of the value (2nd smallest, 3rd
smallest, etc.) written as an integer.

STANDARDIZE(number;
mean; STDEV)

Converts a random variable to a normalized
value. Number is the value to be standardized.
Mean is the arithmetic mean of the
distribution. STDEV is the standard deviation
of the distribution.

Statistical analysis functions 31

Syntax Description

STDEV(number_1;
number_2; ... number_30)

Estimates the standard deviation based on a
sample. Number_1; number_2; ...
number_30 are numerical values or ranges
representing a sample based on an entire
population.

STDEVA(value_1; value_2;
... value_30)

Calculates the standard deviation of an
estimation based on a sample. Value_1;
value_2; ... value_30 are values or ranges
representing a sample derived from an entire
population. Text has the value 0.

STDEVP(number_1;
number_2; ... number_30)

Calculates the standard deviation based on the
entire population. Number_1; number_2; ...
number_30 are numerical values or ranges
representing a sample based on an entire
population.

STDEVPA(value_1;
value_2; ... value_30)

Calculates the standard deviation based on the
entire population. Value_1; value_2; ...
value_30 are values or ranges representing a
sample derived from an entire population. Text
has the value 0.

STEYX(data_Y; data_X) Returns the standard error of the predicted y
value for each x in the regression. Data_Y is
the array or matrix of Y data. Data_X is the
array or matrix of X data.

TDIST(number;
degrees_freedom; mode)

Returns the t-distribution for the given
Number. Degrees_freedom is the number of
degrees of freedom for the t-distribution.
Mode = 1 returns the one-tailed test, Mode =
2 returns the two-tailed test.

TINV(number;
degrees_freedom)

Returns the inverse of the t-distribution, for
the given Number associated with the two-
tailed t-distribution. Degrees_freedom is the
number of degrees of freedom for the t-
distribution.

TRIMMEAN(data; alpha) Returns the mean of a data set without the
Alpha proportion of data at the margins. Data
is the array of data in the sample. Alpha is the
proportion of the marginal data that will not be
taken into consideration.

TTEST(data_1; data_2;
mode; type)

Returns the probability associated with a
Student’s t-Test. Data_1 is the dependent array
or range of data for the first record. Data_2 is

32 Description of Functions

Syntax Description

the dependent array or range of data for the
second record. Mode = 1 calculates the one-
tailed test, Mode = 2 the two- tailed test. Type
of t-test to perform: paired (1), equal variance
(homoscedastic) (2), or unequal variance
(heteroscedastic) (3).

VAR(number_1;
number_2; ... number_30)

Estimates the variance based on a sample.
Number_1; number_2; ... number_30 are
numerical values or ranges representing a
sample based on an entire population.

VARA(value_1; value_2; ...
value_30)

Estimates a variance based on a sample. The
value of text is 0. Value_1; value_2; ...
value_30 are values or ranges representing a
sample derived from an entire population. Text
has the value 0.

VARP(Number_1;
number_2; ... number_30)

Calculates a variance based on the entire
population. Number_1; number_2; ...
number_30 are numerical values or ranges
representing an entire population.

VARPA(value_1; value_2; ..
.value_30)

Calculates the variance based on the entire
population. The value of text is 0. Value_1;
value_2; ... value_30 are values or ranges
representing an entire population.

WEIBULL(number; alpha;
beta; C)

Returns the values of the Weibull distribution
for the given Number. Alpha is the Alpha
parameter of the Weibull distribution. Beta is
the Beta parameter of the Weibull distribution.
C indicates the type of function: C= 0 the form
of the function is calculated, C=1 the
distribution is calculated.

ZTEST(data; number;
sigma)

Returns the two-tailed P value of a z test with
standard distribution. Data is the array of the
data. Number is the value to be tested. Sigma
(optional) is the standard deviation of the total
population. If this argument is missing, the
standard deviation of the sample is processed.

Date and time functions
Use these functions for inserting, editing, and manipulating dates and
times. OpenOffice.org handles and computes a date/time value as a
number. When you assign the number format “Number” to a date or

Date and time functions 33

time value, it is displayed as a number. For example, 01/01/2000 12:00
PM, converts to 36526.5. This is just a matter of formatting; the actual
value is always stored and manipulated as a number. To see the date or
time displayed in a standard format, change the number format (date
or time) accordingly.

To set the default date format used by Calc. go to Tools > Options >
OpenOffice.org Calc > Calculate.

Caution

When entering dates, slashes or dashes used as date separators
may be interpreted as arithmetic operators. To keep dates from
being interpreted as parts of formulas, and thus returning
erroneous results, always place them in quotation marks, for
example, "12/08/52".

Table 5: Data and time functions

Syntax Description

DATE(year; month; day) Converts a date written as year, month, day to
an internal serial number and displays it in the
cell’s formatting. Year is an integer between
1583 and 9956 or 0 and 99. Month is an
integer between 1 and 12. Day is an integer
between 1 and 31.

DATEVALUE("Text") Returns the internal date number for text in
quotes. Text is a valid date expression and
must be entered with quotation marks.

DAY(number) Returns the day, as an integer, of the given
date value. A negative date/time value can be
entered. Number is a time value.

DAYS(date_2; date_1) Calculates the difference, in days, between
two date values. Date_1 is the start date.
Date_2 is the end date. If Date_2 is an earlier
date than Date_1, the result is a negative
number.

DAYS360(date_1; date_2;
type)

Returns the difference between two dates
based on the 360 day year used in interest
calculations. If Date_2 is earlier than Date_1,
the function will return a negative number.
Type (optional) determines the type of
difference calculation: the US method (0) or
the European method (≠0).

DAYSINMONTH(date) Calculates the number of days in the month of
the given date.

34 Description of Functions

Syntax Description

DAYSINYEAR(date) Calculates the number of days in the year of
the given date.

EASTERSUNDAY(integer) Returns the date of Easter Sunday for the
entered year. Year is an integer between 1583
and 9956 or 0 and 99.

EDATE(start_date;
months)

The result is a date a number of Months away
from the given Start_date. Only months are
considered; days are not used for calculation.
Months is the number of months.

EOMONTH(start_date;
months)

Returns the date of the last day of a month
which falls Months away from the given
Start_date. Months is the number of months
before (negative) or after (positive) the start
date.

HOUR(number) Returns the hour, as an integer, for the given
time value. Number is a time value.

ISLEAPYEAR(date) Determines whether a given date falls within a
leap year. Returns either 1 (TRUE) or 0
(FALSE).

MINUTE(number) Returns the minute, as an integer, for the
given time value. Number is a time value.

MONTH(number) Returns the month, as an integer, for the given
date value. Number is a time value.

MONTHS(start_date;
end_date; type)

Calculates the difference, in months, between
two date values. Date_1 is the start (earlier)
date. Date_2 is the end date. Type is one of
two possible values, 0 (interval) or 1 (in
calendar months). If Date_2 is an earlier date
than Date_1, the result is a negative number.

NETWORKDAYS(start
_date; end_date; holidays)

Returns the number of workdays between
start_date and end_date. Holidays can be
deducted. Start_date is the date from which
the calculation is carried out. End_date is the
date up to which the calculation is carried out.
If the start or end date is a workday, the day is
included in the calculation. Holidays
(optional) is a list of holidays. Enter a cell
range in which the holidays are listed
individually.

Date and time functions 35

Syntax Description

NOW() Returns the computer system date and time.
The value is updated when your document
recalculates. NOW is a function without
arguments.

SECOND(number) Returns the second, as an integer, for the
given time value. Number is a time value.

TIME(hour; minute;
second)

Returns the current time value from values for
hours, minutes and seconds. This function can
be used to convert a time based on these three
elements to a decimal time value. Hour,
minute and second must all be integers.

TIMEVALUE(text) Returns the internal time number from a text
enclosed by quotes in a time entry format. The
internal number indicated as a decimal is the
result of the date system used under OOo to
calculate date entries.

TODAY() Returns the current computer system date.
The value is updated when your document
recalculates. TODAY is a function without
arguments.

WEEKDAY(number; type) Returns the day of the week for the given
number (date value). The day is returned as
an integer based on the type. Type determines
the type of calculation: type = 1 (default), the
weekdays are counted starting from Sunday
(Monday = 0); type = 2, the weekdays are
counted starting from Monday (Monday = 1);
type = 3, the weekdays are counted starting
from Monday (Monday = 0).

WEEKNUM(number;
mode)

Calculates the number of the calendar week of
the year for the internal date number. Mode
sets the start of the week and the calculation
type: 1 = Sunday, 2 = Monday.

WEEKNUM_ADD(date;
return_type)

Calculates the calendar week of the year for a
Date. Date is the date within the calendar
week. Return_type sets the start of the week
and the calculation type: 1 = Sunday, 2 =
Monday.

WEEKS(start_date;
end_date; type)

Calculates the difference in weeks between
two dates, start_date and end_date. Type is
one of two possible values, 0 (interval) or 1 (in
numbers of weeks).

36 Description of Functions

Syntax Description

WEEKSINYEAR(date) Calculates the number of weeks in a year until
a certain date. A week that spans two years is
added to the year in which most days of that
week occur.

WORKDAY(start_date;
days; holidays)

Returns a date number that can be formatted
as a date. You then see the date of a day that is
a certain number of Workdays away from the
start_date. Holidays (optional) is a list of
holidays. Enter a cell range in which the
holidays are listed individually.

YEAR(number) Returns the year as a number according to the
internal calculation rules. Number shows the
internal date value for which the year is to be
returned.

YEARFRAC(start_date;
end_date; basis)

Returns a number between 0 and 1,
representing the fraction of a year between
start_date and end_date. Start_date and
end_date are two date values. Basis is chosen
from a list of options and indicates how the
year is to be calculated.

YEARS(tart_date;
end_date; type)

Calculates the difference in years between two
dates: the start_date and the end_date. Type
calculates the type of difference.

Logical functions
Use the logical functions to test values and produce results based on
the result of the test. These functions are conditional and provide the
ability to write longer formulas based on input or output.

Table 6: Logical functions

Syntax Description

AND(logical_value_1;
logical_value_2;
...logical_value_30)

Returns TRUE if all arguments are TRUE. If any
element is FALSE, this function returns the FALSE
value. Logical_value_1; logical_value_2;
...logical_value_30 are conditions to be checked.
All conditions can be either TRUE or FALSE. If a
range is entered as a parameter, the function uses
the value from the range that is in the current
column or row. The result is TRUE if the logical
value in all cells within the cell range is TRUE

Logical functions 37

Syntax Description

FALSE() Set the logical value to FALSE. The FALSE()
function does not require any arguments.

IF(test; then_value;
otherwise_value)

Specifies a logical test to be performed. Test is
any value or expression that can be TRUE or
FALSE. Then_value (optional) is the value that is
returned if the logical test is TRUE.
Otherwise_value (optional) is the value that is
returned if the logical test is FALSE.

NOT(logical_value) Reverses the logical value. Logical_value is any
value to be reversed.

OR(logical_value_1;
logical_value_2;
...logical_value_30)

Returns TRUE if at least one argument is TRUE.
Returns the value FALSE if all the arguments have
the logical value FALSE. Logical_value_1;
logical_value_2; ...logical_value_30 are
conditions to be checked. All conditions can be
either TRUE or FALSE. If a range is entered as a
parameter, the function uses the value from the
range that is in the current column or row.

TRUE() Sets the logical value to TRUE. The TRUE()
function does not require any arguments.

Informational functions
These functions provide information (or feedback) regarding the
results of a test for a specific condition, or a test for the type of data or
content a cell contains.

Table 7: Informational functions

Syntax Description

CELL(info_type;
reference)

Returns information on a cell such as its
address, formatting or contents of a cell based
on the value of the info_type argument.
Info_type specifies the type of information to be
returned and comes from a predefined list of
arguments. Info_type is not case sensitive, but
it must be enclosed within quotes. Reference is
the address of the cell to be examined. If
reference is a range, the cell reference moves
to the top left of the range. If reference is
missing, Calc uses the position of the cell in
which this formula is located.

38 Description of Functions

Syntax Description

CURRENT() Calculates the current value of a formula at the
actual position.

FORMULA(reference) Displays the formula of a formula cell at any
position. The formula will be returned as a string
in the Reference position. If no formula cell can
be found, or if the presented argument is not a
reference, returns the error value #N/A.

ISBLANK(value) Returns TRUE if the reference to a cell is blank.
This function is used to determine if the content
of a cell is empty. A cell with a formula inside is
not empty. If an error occurs, the function
returns a logical or numerical value. Value is the
content to be tested.

ISERR(value) Returns TRUE if the value refers to any error
value except #N/A. You can use this function to
control error values in certain cells. If an error
occurs, the function returns a logical or
numerical value. Value is any value or
expression in which a test is performed to
determine whether an error value not equal to
#N/A is present.

ISERROR(value) The ISERROR tests if the cells contain general
error values. ISERROR recognizes the #N/A
error value. If an error occurs, the function
returns a logical or numerical value. Value is
any value where a test is performed to
determine whether it is an error value.

ISEVEN_ADD(number) Tests for even numbers. Returns TRUE (1) if the
number returns a whole number when divided
by 2.

ISFORMULA(reference) Returns TRUE if a cell is a formula cell. If an
error occurs, the function returns a logical or
numerical value. Reference indicates the
reference to a cell in which a test will be
performed to determine if it contains a
reference.

ISLOGICAL(value) Returns TRUE if the cell contains a logical
number format. The function is used in order to
check for both TRUE and FALSE values in
certain cells. If an error occurs, the function
returns a logical or numerical value. Value is the
value to be tested for logical number format.

Informational functions 39

Syntax Description

ISNA(value) Returns TRUE if a cell contains the #N/A (value
not available) error value. If an error occurs, the
function returns a logical or numerical value.
Value is the value or expression to be tested.

ISNONTEXT(value) Tests if the cell contents are text or numbers,
and returns FALSE if the contents are text. If an
error occurs, the function returns a logical or
numerical value. Value is any value or
expression where a test is performed to
determine whether it is a text or numbers or a
Boolean value.

ISNUMBER(value) Returns TRUE if the value refers to a number. If
an error occurs, the function returns a logical or
numerical value. Value is any expression to be
tested to determine whether it is a number or
text.

ISODD_ADD(number) Returns TRUE (1) if the number does not return
a whole number when divided by 2. Number is
the number to be tested.

ISREF(value) Tests if the content of one or several cells is a
reference. Verifies the type of references in a
cell or a range of cells. If an error occurs, the
function returns a logical or numerical value.
Value is the value to be tested, to determine
whether it is a reference.

ISTEXT(value) Returns TRUE if the cell contents refer to text. If
an error occurs, the function returns a logical or
numerical value. Value is a value, number,
Boolean value, or error value to be tested.

N(value) Returns the number 1, if the parameter is TRUE.
Returns the parameter, if the parameter is a
number. Returns the number 0 for other
parameters. If an error occurs, the function
returns a logical or numerical value. Value is the
parameter to be converted into a number.

NA() Returns the error value #N/A.

TYPE(value) Returns the type of value. If an error occurs, the
function returns a logical or numerical value.
Value is a specific value for which the data type
is determined. Value 1 = number, value 2 = text,
value 4 = Boolean value, value 8 = formula,
value 16 = error value.

40 Description of Functions

Database functions
This section deals with functions used with data organized as one row
of data for one record. The Database category should not be confused
with the Base database component in OpenOffice.org. A Calc database
is simple a range of cells that comprises a block of related data where
each row contains a separate record. There is no connection between a
database in OpenOffice.org and the Database category in OOo Calc.

The database functions use the following common arguments:

• Database is a range of cells which define the database.
• Database_field specifies the column where the function operates

on after the search criteria of the first parameter is applied and
the data rows are selected. It is not related to the search criteria
itself. The number 0 specifies the whole data range. To reference
a column by using the column header name, place quotation
marks around the header name.

• Search_criteria is a cell range containing the search criteria..
Empty cells in the search criteria range will be ignored.

Note

All of the search-criteria arguments for the database functions
support regular expressions. For example, “all.*” can be entered
to find the first location of “all” followed by any characters. To
search for text that is also a regular expression, precede every
character with a \ character. You can switch the automatic
evaluation of regular expressions on and off in Tools > Options
> OpenOffice.org Calc > Calculate.

Table 8: Database average

Syntax Description

DAVERAGE(database;
database_field;
search_criteria)

Returns the average of the values of all cells
(fields) in all rows (database records) that match
the specified search_criteria. The search
supports regular expressions.

DCOUNT(database;
database_field;
search_criteria)

Counts the number of rows (records) in a database
that match the specified search_criteria and
contain numerical values. The search supports
regular expressions. For the database_field
parameter, enter a cell address to specify the
column, or enter the number 0 for the entire
database. The parameter cannot be empty.

Database functions 41

Syntax Description

DCOUNTA(database;
database_field;
search_criteria)

Counts the number of rows (records) in a database
that match the specified search_criteria and
contain numeric or alphanumeric values. The
search supports regular expressions.

DGET(database;
database_field;
search_criteria)

Returns the contents of the referenced cell in a
database which matches the specified
search_criteria. In case of an error, the function
returns either #VALUE! for no row found, or
Err502 for more than one cell found.

DMAX(database;
database_field;
search_criteria)

Returns the maximum content of a cell (field) in a
database (all records) that matches the specified
search_criteria. The search supports regular
expressions.

DMIN(database;
database_field;
search_criteria)

Returns the minimum content of a cell (field) in a
database that matches the specified
search_criteria. The search supports regular
expressions.

DPRODUCT(database;
database_field;
search_criteria)

Multiplies all cells of a data range where the cell
contents match the search_criteria. The search
supports regular expressions.

DSTDEV(database;
database_field;
search_criteria)

Calculates the standard deviation of a population
based on a sample, using the numbers in a
database column that match the search_criteria.
The records are treated as a sample of data. Note
that a representative result of a large population
can not be obtained from a sample of fewer than
one thousand.

DSTDEVP(database;
database_field;
search_criteria)

Calculates the standard deviation of a population
based on all cells of a data range which match the
search_criteria. The records from the example
are treated as the whole population.

DSUM(database;
database_field;
search_criteria)

Returns the total of all cells in a database field in
all rows (records) that match the specified
search_criteria. The search supports regular
expressions.

DVAR(database;
database_field;
search_criteria)

Returns the variance of all cells of a database field
in all records that match the specified
search_criteria. The records from the example
are treated as a sample of data. A representative
result of a large population cannot be obtained
from a sample population of fewer than one
thousand.

42 Description of Functions

Syntax Description

DVARP(database;
database_field;
search_criteria)

Calculates the variance of all cell values in a
database field in all records that match the
specified search_criteria. The records are from
the example are treated as an entire population.

Array functions

Table 9: Array functions

Syntax Description

FREQUENCY(data;
classes)

Calculates the frequency distribution in a one-
column-array. The default value supply and the
number of intervals or classes are used to count
how many values are omitted on the single
intervals. Data is the array of, or reference to, the
set of values to be counted. Classes is the array of
the class set.

GROWTH(data_Y;
data_X; new_data_X;
function_type)

Calculates the points of an exponential trend in an
array. Data_Y is the Y Data array. Data_X
(optional) is the X Data array. New_Data_X
(optional) is the X data array, in which the values
are recalculated. Function_type is optional. If
function_type = 0, functions in the form y = m^x
are calculated. Otherwise, y = b*m^x functions
are calculated.

LINEST(data_Y;
data_X; linear_type;
stats)

Returns the parameters of a linear trend. Data_Y
is the Y Data array. Data_X (optional) is the X Data
array. Linear_Type (optional): If the line goes
through the zero point, then set Linear_Type = 0.
Stats (optional): If Stats=0, only the regression
coefficient is calculated. Otherwise, other
statistics will be seen.

LOGEST(data_Y;
data_X; function_type;
stats)

Calculates the adjustment of the entered data as
an exponential regression curve (y=b*m^x).
Data_Y is the Y Data array. Data_X (optional) is
the X Data array. Function_type (optional): If
function_type = 0, functions in the form y = m^x
are calculated. Otherwise, y = b*m^x functions
are calculated. Stats (optional). If Stats=0, only
the regression coefficient is calculated.

Array functions 43

Syntax Description

MDETERM(array) Returns the array determinant of an array. This
function returns a value in the current cell; it is
not necessary to define a range for the results.
Array is a square array in which the determinants
are defined.

MINVERSE(array) Returns the inverse array. Array is a square array
that is to be inverted.

MMULT(array; array) Calculates the array product of two arrays. The
number of columns for array 1 must match the
number of rows for array 2. The square array has
an equal number of rows and columns. Array at
first place is the first array used in the array
product. Array at second place is the second array
with the same number of rows.

MUNIT(dimensions) Returns the unitary square array of a certain size.
The unitary array is a square array where the
main diagonal elements equal 1 and all other
array elements are equal to 0. Dimensions refers
to the size of the array unit.

SUMPRODUCT(array
1; array 2; ...array 30)

Multiplies corresponding elements in the given
arrays, and returns the sum of those products.
Array 1; array 2;...array 30 are arrays whose
corresponding elements are to be multiplied. At
least one array must be part of the argument list.
If only one array is given, all array elements are
summed.

SUMX2MY2(array_X;
array_Y)

Returns the sum of the difference of squares of
corresponding values in two arrays. Array_X is the
first array whose elements are to be squared and
added. Array_Y is the second array whose
elements are to be squared and subtracted.

SUMX2PY2(array_X;
array_Y)

Returns the sum of the sum of squares of
corresponding values in two arrays. Array_X is the
first array whose arguments are to be squared and
added. Array_Y is the second array, whose
elements are to be added and squared.

SUMXMY2(array_X;
array_Y)

Adds the squares of the variance between
corresponding values in two arrays. Array_X is the
first array whose elements are to be subtracted
and squared. Array_Y is the second array, whose
elements are to be subtracted and squared.

44 Description of Functions

Syntax Description

TRANSPOSE(array) Transposes the rows and columns of an array.
Array is the array in the spreadsheet that is to be
transposed.

TREND(data_Y;
data_X; new_data_X;
linear_Type)

Returns values along a linear trend. Data_Y is the
Y Data array. Data_X (optional) is the X Data
array. New_data_X (optional) is the array of the X
data, which are used for recalculating values.
Linear_type is optional. If linear_type = 0, then
lines will be calculated through the zero point.
Otherwise, offset lines will also be calculated. The
default is linear_type <> 0.

Spreadsheet functions
Use spreadsheet functions to search and address cell ranges and
provide feedback regarding the contents of a cell or range of cells. You
can use functions such as HYPERLINK() and DDE() to connect to other
documents or data sources.

Table 10: Spreadsheet functions

Syntax Description

ADDRESS(row; column;
abs; sheet)

Returns a cell address (reference) as text,
according to the specified row and column
numbers. Optionally, whether the address is
interpreted as an absolute address (for
example, A1) or as a relative address (as
A1) or in a mixed form (A$1 or $A1) can be
determined. The name of the sheet can also
be specified. Row is the row number for the
cell reference. Column is the column number
for the cell reference (the number, not the
letter). Abs determines the type of reference.
Sheet is the name of the sheet.

AREAS(reference) Returns the number of individual ranges that
belong to a multiple range. A range can
consist of contiguous cells or a single cell.
Reference is the reference to a cell or cell
range.

CHOOSE(index; value1; ...
value30)

Uses an index to return a value from a list of
up to 30 values. Index is a reference or
number between 1 and 30 indicating which
value is to be taken from the list. Value1; ...

Spreadsheet functions 45

Syntax Description

value30 is the list of values entered as a
reference to a cell or as individual values.

COLUMN(reference) Returns the column number of a cell
reference. If the reference is a cell, the
column number of the cell is returned; if the
parameter is a cell area, the corresponding
column numbers are returned in a single-row
array if the formula is entered as an array
formula. If the COLUMN function with an
area reference parameter is not used for an
array formula, only the column number of
the first cell within the area is determined.
Reference is the reference to a cell or cell
area whose first column number is to be
found. If no reference is entered, the column
number of the cell in which the formula is
entered is found. Calc automatically sets the
reference to the current cell.

COLUMNS(array) Returns the number of columns in the given
reference. Array is the reference to a cell
range whose total number of columns is to be
found. The argument can also be a single
cell.

DDE(server; file; range;
mode)

Returns the result of a DDE-based link. If the
contents of the linked range or section
changes, the returned value will also change.
The spreadsheet can be reloaded, or Edit >
Links selected, to see the updated links.
Cross-platform links, for example from an
OpenOffice.org installation running on a
Windows machine to a document created on
a Linux machine, are not supported. Server
is the name of a server application.
OpenOffice.org applications have the server
name “Soffice”. File is the complete file
name, including path. Range is the area
containing the data to be evaluated. Mode is
an optional parameter that controls the
method by which the DDE server converts its
data into numbers.

ERRORTYPE(reference) Returns the number corresponding to an
error value occurring in a different cell. With
the aid of this number, an error message text
can be generated. If an error occurs, the

46 Description of Functions

Syntax Description

function returns a logical or numerical value.
Reference contains the address of the cell in
which the error occurs.

HLOOKUP(search_criteria;
array; index; sorted)

Searches for a value and reference to the
cells below the selected area. This function
verifies if the first row of an array contains a
certain value. The function returns the value
in a row of the array, named in the index, in
the same column. The search supports
regular expressions.

HYPERLINK(URL) or
HYPERLINK(URL; cell_text)

When a cell that contains the HYPERLINK
function is clicked, the hyperlink opens. URL
specifies the link target. The optional
cell_text argument is the text displayed in
the cell. If the cell_text parameter is not
specified, the URL is displayed.

INDEX(reference; row;
column; range)

Returns the content of a cell, specified by
row and column number or an optional range
name. Reference is a cell reference, entered
either directly or by specifying a range name.
If the reference consists of multiple ranges,
the reference or range name must be
enclosed in parentheses. Row (optional) is
the row number of the reference range, for
which to return a value. Column (optional) is
the column number of the reference range,
for which to return a value. Range (optional)
is the index of the subrange if referring to a
multiple range.

INDIRECT(reference) Returns the reference specified by a text
string. This function can also be used to
return the area of a corresponding string.
Reference is a reference to a cell or an area
(in text form) for which to return the
contents.

LOOKUP(search_criterion;
search_vector;
result_vector)

Returns the contents of a cell either from a
one-row or one-column range or from an
array. Optionally, the assigned value (of the
same index) is returned in a different column
and row. As opposed to VLOOKUP and
HLOOKUP, search and result vectors may be
at different positions; they do not have to be
adjacent. Additionally, the search vector for
the LOOKUP must be sorted, otherwise the

Spreadsheet functions 47

Syntax Description

search will not return any usable results. The
search supports regular expressions.
Search_criterion is the value to be searched
for; entered either directly or as a reference.
Search_vector is the single-row or single-
column area to be searched. Result_vector
is another single-row or single-column range
from which the result of the function is
taken. The result is the cell of the result
vector with the same index as the instance
found in the search vector.

MATCH(search_criterion;
lookup_array; type)

Returns the relative position of an item in an
array that matches a specified value. The
function returns the position of the value
found in the lookup_array as a number.
Search_criterion is the value which is to be
searched for in the single-row or single-
column array. Lookup_array is the reference
searched. A lookup array can be a single row
or column, or part of a single row or column.
Type may take the values 1, 0, or –1. This
corresponds to the same function in
Microsoft Excel. The search supports regular
expressions

OFFSET(reference; rows;
columns; height; width)

Returns the value of a cell offset by a certain
number of rows and columns from a given
reference point. Reference is the cell from
which the function searches for the new
reference. Rows is the number of cells by
which the reference was corrected up
(negative value) or down. Columns is the
number of columns by which the reference
was corrected to the left (negative value) or
to the right. Height is the optional vertical
height for an area that starts at the new
reference position. Width is the optional
horizontal width for an area that starts at the
new reference position.

ROW(reference) Returns the row number of a cell reference.
If the reference is a cell, it returns the row
number of the cell. If the reference is a cell
range, it returns the corresponding row
numbers in a one-column Array if the
formula is entered as an array formula. If the
ROW function with a range reference is not

48 Description of Functions

Syntax Description

used in an array formula, only the row
number of the first range cell will be
returned. Reference is a cell, an area, or the
name of an area. If a reference is not
indicated, Calc automatically sets the
reference to the current cell.

ROWS(array) Returns the number of rows in a reference or
array. Array is the reference or named area
whose total number of rows is to be
determined.

SHEET(reference) Returns the sheet number of a reference or a
string representing a sheet name. If no
parameters are entered, the result is the
sheet number of the spreadsheet containing
the formula. Reference (optional) is the
reference to a cell, an area, or a sheet name
string.

SHEETS(reference) Determines the number of sheets in a
reference. If no parameters are entered, the
result is the number of sheets in the current
document. Reference (optional) is the
reference to a sheet or an area.

STYLE(style; time; style2) Applies a style to the cell containing the
formula. After a set amount of time, another
style can be applied. This function always
returns the value 0, allowing it to be added
to another function without changing the
value. Style is the name of a cell style
assigned to the cell. Time is an optional time
range in seconds. Style2 is the optional
name of a cell style assigned to the cell after
a certain amount of time has passed.

VLOOKUP(search_criterion;
array; index; sort_order)

Searches vertically with reference to
adjacent cells to the right. If a specific value
is contained in the first column of an array,
returns the value to the same line of a
specific array column named by index. The
search supports regular expressions.
Search_criterion is the value searched for
in the first column of the array. Array is the
reference, which must include at least two
columns. Index is the number of the column
in the array that contains the value to be
returned. The first column has the number 1.

Spreadsheet functions 49

Syntax Description

Sort_order (optional) indicates whether the
first column in the array is sorted in
ascending order.

Text functions
Use Calc’s text functions to search and manipulate text strings or
character codes.

Table 11: Text functions

Syntax Description

ARABIC(text) Calculates the value of a Roman number. The
value range must be between 0 and 3999. Text
is the text that represents a Roman number.

BASE(number; radix;
[minimum_length])

Converts a positive integer to a specified base
then into text using the characters from the
base's numbering system (decimal, binary,
hexadecimal, etc.). Only the digits 0-9 and the
letters A-Z are used. Number is the positive
integer to be converted. Radix is the base of
the number system. It may be any positive
integer between 2 and 36. Minimum_length
(optional) is the minimum length of the
character sequence that has been created. If
the text is shorter than the indicated minimum
length, zeros are added to the left of the string.

CHAR(number) Converts a number into a character according
to the current code table. The number can be a
two-digit or three-digit integer number.
Number is a number between 1 and 255
representing the code value for the character.

CLEAN(text) Removes all non-printing characters from the
string. Text refers to the text from which to
remove all non-printable characters.

CODE(text) Returns a numeric code for the first character
in a text string. Text is the text for which the
code of the first character is to be found.

CONCATENATE(text_1;
text_2; ...; text_30)

Combines several text strings into one string.
Text_1; text_2; ... text_30 are text passages
that are to be combined into one string.

50 Description of Functions

Syntax Description

DECIMAL(text; radix) Converts text with characters from a number
system to a positive integer in the base radix
given. The radix must be in the range 2 to 36.
Spaces and tabs are ignored. The text field is
not case-sensitive. Text is the text to be
converted. To differentiate between a
hexadecimal number, such as A1 and the
reference to cell A1, place the number in
quotation marks; for example, "A1" or "FACE”.
Radix is the base of the number system. It may
be any positive integer between 2 and 36.

DOLLAR(value; decimals) Converts a number to an amount in the
currency format, rounded to a specified
decimal place. Value is the number to be
converted to currency; it can be a number, a
reference to a cell containing a number, or a
formula which returns a number. Decimals
(optional) is the number of decimal places. If no
decimals value is specified, all numbers in
currency format will be displayed with two
decimal places. The currency format is set in
the system settings.

EXACT(text_1; text_2) Compares two text strings and returns TRUE if
they are identical. This function is case-
sensitive. Text_1 is the first text to compare.
Text_2 is the second text to compare.

FIND(find_text; text;
position)

Looks for a string of text within another string.
Where to begin the search can also be defined.
The search term can be a number or any string
of characters. The search is case-sensitive.
Find_text is the text to be found. Text is the
text where the search takes place. Position
(optional) is the position in the text from which
the search starts.

FIXED(number; decimals;
no_thousands_separator)

Specifies that a number be displayed with a
fixed number of decimal places and with or
without a thousands separator. This function
can be used to apply a uniform format to a
column of numbers. Number is the number to
be formatted. Decimals is the number of
decimal places to be displayed.
No_thousands_separator (optional)
determines whether the thousands separator is
used or not. If the parameter is a number not

Text functions 51

Syntax Description

equal to 0, the thousands separator is
suppressed. If the parameter is equal to 0 or if
it is missing altogether, the thousands
separators of the current locale setting are
displayed.

LEFT(text; number) Returns the first character or characters in a
text string. Text is the text where the initial
partial words are to be determined. Number
(optional) is the number of characters for the
start text. If this parameter is not defined, one
character is returned.

LEN(text) Returns the length of a string including spaces.
Text is the text whose length is to be
determined.

LOWER(text) Converts all uppercase letters in a text string
to lowercase. Text is the text to be converted.

MID(text; start; number) Returns a text segment of a character string.
The parameters specify the starting position
and the number of characters. Text is the text
containing the characters to extract. Start is
the position of the first character in the text to
extract. Number is the number of characters
in the part of the text.

PROPER(text) Capitalizes the first letter in all words of a text
string. Text is the text to be converted.

REPLACE(text; position;
length; new_text)

Replaces part of a text string with a different
text string. This function can be used to replace
both characters and numbers (which are
automatically converted to text). The result of
the function is always displayed as text. To
perform further calculations with a number
which has been replaced by text, convert it
back to a number using the VALUE function.
Any text containing numbers must be enclosed
in quotation marks so it is not interpreted as a
number and automatically converted to text.
Text is text of which a part will be replaced.
Position is the position within the text where
the replacement will begin. Length is the
number of characters in text to be replaced.
New_text is the text which replaces text..

REPT(text; number) Repeats a character string by the given
number of copies. Text is the text to be

52 Description of Functions

Syntax Description

repeated. Number is the number of
repetitions. The result can be a maximum of
255 characters.

RIGHT(text; number) Defines the last character or characters in a
text string. Text is the text of which the right
part is to be determined. Number (optional) is
the number of characters from the right part of
the text.

ROMAN(number; mode) Converts a number into a Roman numeral. The
value range must be between 0 and 3999; the
modes can be integers from 0 to 4. Number is
the number that is to be converted into a
Roman numeral. Mode (optional) indicates the
degree of simplification. The higher the value,
the greater is the simplification of the Roman
numeral.

ROT13(text) Encrypts a character string by moving the
characters 13 positions in the alphabet. After
the letter Z, the alphabet begins again
(Rotation). Applying the encryption function
again to the resulting code, decrypts the text.
Text: Enter the character string to be
encrypted. ROT13(ROT13(Text)) decrypts the
code.

SEARCH(find_text; text;
position)

Returns the position of a text segment within a
character string. The start of the search can be
set as an option. The search text can be a
number or any sequence of characters. The
search is not case-sensitive. The search
supports regular expressions. Find_text is the
text to be searched for. Text is the text where
the search will take place. Position (optional)
is the position in the text where the search is to
start.

SUBSTITUTE(text;
search_text; new text;
occurrence)

Substitutes new text for old text in a string.
Text is the text in which text segments are to
be exchanged. Search_text is the text segment
that is to be replaced (a number of times). New
text is the text that is to replace the text
segment. Occurrence (optional) indicates how
many occurrences of the search text are to be
replaced. If this parameter is missing, the
search text is replaced throughout.

Text functions 53

Syntax Description

T(value) Converts a number to a blank text string.
Value is the value to be converted. Also, a
reference can be used as a parameter. If the
referenced cell includes a number or a formula
containing a numerical result, the result will be
an empty string.

TEXT(number; format) Converts a number into text according to a
given format. Number is the numerical value
to be converted. Format is the text which
defines the format. Use decimal and thousands
separators according to the language set in the
cell format.

TRIM(text) Removes spaces that are in front of a string, or
aligns cell contents to the left. Text is the text
in which leading spaces are removed, or the
cell in which the contents will be left-aligned.

UPPER(text) Converts the string specified in the text
parameter to uppercase. Text is the lower case
letters you want to convert to upper case.

VALUE(text) Converts a text string into a number. Text is
the text to be converted to a number.

Add-in functions

Table 12: Add-in functions

Syntax Description

BESSELI(x; n) Calculates the modified Bessel function
In(x). x is the value on which the function
will be calculated. n is the order of the
Bessel function.

BESSELJ(x; n) Calculates the Bessel function Jn(x) (cylinder
function). x is the value on which the
function will be calculated. n is the order of
the Bessel function.

BESSELK(x; n) Calculates the modified Bessel function
Kn(x). x is the value on which the function
will be calculated. n is the order of the
Bessel function.

BESSELY(x; n) Calculates the modified Bessel function
Yn(x), also known as the Weber or Neumann

54 Description of Functions

Syntax Description

function. x is the value on which the function
will be calculated. n is the order of the
Bessel function.

BIN2DEC(number) Returns the decimal number for the binary
number entered. Number is the binary
number.

BIN2HEX(number; places) Returns the hexadecimal number for the
binary number entered. Number is the
binary number. Places is the number of
places to be output.

BIN2OCT(number; places) Returns the octal number for the binary
number entered. Number is the binary
number. Places is the number of places to be
output.

COMPLEX(real_num; i_num;
suffix)

Returns a complex number from a real
coefficient and an imaginary coefficient.
Real_num is the real coefficient of the
complex number. I_num is the imaginary
coefficient of the complex number. Suffix is
list of options, "i” or "j”.

CONVERT_ADD(number;
from_unit; to_unit)

Converts a value from one unit of measure to
the corresponding value in another unit of
measure. Number is the number to be
converted. From_unit is the unit from which
conversion is taking place. To_unit is the
unit to which conversion is taking place.

DEC2BIN(number; places) Returns the binary number for the decimal
number entered between –512 and 511.
Number is the decimal number. Places is
the number of places to be output.

DEC2HEX(number; places) Returns the hexadecimal number for the
decimal number entered. Number is the
decimal number. Places is the number of
places to be output.

DEC2OCT(number; places) Returns the octal number for the decimal
number entered. Number is the decimal
number. Places is the number of places to
be output.

DELTA(number_1;
number_2)

Returns TRUE (1) if both numbers are
equal, otherwise returns FALSE (0).

Add-in functions 55

Syntax Description

ERF(lower_limit;
upper_limit)

Returns values of the Gaussian error
integral. Lower_limit is the lower limit of
integral. Upper_limit (optional) is the upper
limit of the integral. If this value is missing,
the calculation takes places between 0 and
the lower limit.

ERFC(lower_limit) Returns complementary values of the
Gaussian error integral between x and
infinity. Lower limit is the lower limit of
integral (x).

FACTDOUBLE(number) Returns the factorial of the number with
increments of 2. If the number is even, the
following factorial is calculated: n*(N-2)*(n-
4)*...*4*2. If the number is uneven, the
following factorial is calculated: n*(N-2)*(n-
4)*...*3*1.

GESTEP(number; step) Returns 1 if number is greater than or equal
to step.

HEX2BIN(number; places) Returns the binary number for the
hexadecimal number entered. Number is
the hexadecimal number. Places is the
number of places to be output.

HEX2DEC(number) Returns the decimal number for the
hexadecimal number entered. Number is
the hexadecimal number.

HEX2OCT(number; places) Returns the octal number for the
hexadecimal number entered. Number is
the hexadecimal number. Places is the
number of places to be output.

IMABS(complex_number) Returns the absolute value (modulus) of a
complex_number. The complex number is
entered in the form "x + yi" or "x + yj"

IMAGINARY(complex
_number)

Returns the imaginary coefficient of a
complex_number. The complex number is
entered in the form "x + yi" or "x + yj"

IMARGUMENT(complex
_number)

Returns the argument (the phi angle) of a
complex_number. The complex number is
entered in the form "x + yi" or "x + yj"

IMCONJUGATE(complex
_number)

Returns the conjugated complex complement
to a complex_number. The complex number
is entered in the form "x + yi" or "x + yj"

56 Description of Functions

Syntax Description

IMCOS(complex_number) Returns the cosine of a complex_number.
The complex number is entered in the form
"x + yi" or "x + yj"

IMDIV(numerator;
denominator)

Returns the division of two complex
numbers. Numerator, Denominator are
entered in the form "x + yi" or "x + yj"

IMEXP(complex_number) Returns the power of e (the Eulerian
number) and the complex number. The
complex_number is entered in the form "x
+ yi" or "x + yj"

IMLN(complex_number) Returns the natural logarithm of a
complex_number. The complex_number is
entered in the form "x + yi" or "x + yj”

IMLOG10(complex
_number)

Returns the common logarithm of a
complex_number. The complex number is
entered in the form "x + yi" or "x + yj"

IMLOG2(complex _number) Returns the binary logarithm of a
complex_number. The complex number is
entered in the form "x + yi" or "x + yj"

IMPOWER(complex
_number; number)

Returns the integer power of a
complex_number. The complex number is
entered in the form "x + yi" or "x + yj".
Number is the exponent.

IMPRODUCT(complex
_number;
complex_number_1; ...)

Returns the product of up to 29
complex_numbers. The complex numbers
are entered in the form "x + yi" or "x + yj"

IMREAL(complex _number) Returns the real coefficient of a
complex_number. The complex number is
entered in the form "x + yi" or "x + yj"

IMSIN(complex_number) Returns the sine of a complex_number. The
complex number is entered in the form "x +
yi" or "x + yj"

IMSQRT(complex_number) Returns the square root of a
complex_number. The complex numbers
are entered in the form "x + yi" or "x + yj"

IMSUB(complex_number_1;
complex_number_2)

Returns the subtraction of two
complex_numbers. The complex_numbers
are entered in the form "x + yi" or "x + yj"

IMSUM(complex_number;
complex_number_1; ...)

Returns the sum of up to 29 complex
numbers. The complex_numbers are

Add-in functions 57

Syntax Description

entered in the form "x + yi" or "x + yj"

OCT2BIN(number; places) Returns the binary number for the octal
number entered. Number is the octal
number. Places is the number of places to
be output.

OCT2DEC(number) Returns the decimal number for the octal
number entered. Number is the octal
number.

OCT2HEX(number; places) Returns the hexadecimal number for the
octal number entered. Number is the octal
number. Places is the number of places to
be output.

58 Description of Functions

	Copyright
	Functions available in Calc
	Terminology: numbers and arguments

	Mathematical functions
	Financial analysis functions
	A note about dates
	A note about interest rates

	Statistical analysis functions
	Date and time functions
	Logical functions
	Informational functions
	Database functions
	Array functions
	Spreadsheet functions
	Text functions
	Add-in functions

